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Abstract: In this paper we propose a methodological 

and technical approach to develop model compilers 

which provide formal proof of semantic preservation 

and complement model-level verification activities 

with formal analysis on the generated source code. 

Our paper also details which characteristic a 

programming language shall exhibit to be used as 

target of a model compiler. Finally, we evaluate the 

impact of using formal programming languages on 

the development and qualification of model 

compilers. 
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1. Introduction 

Model-driven development is a major innovation 

vector for the construction of high-integrity 

embedded systems. The paradigm has been 

successfully applied to several large projects in the 

last decade, showing the advantages of shifting from 

source-centric to model-centric processes. 

Regardless of success stories, model-based 

approaches have failed to completely replace source 

code in the application life cycle. Why? 

The first observation is that some model 

transformation chains have failed to provide clear 

added-value for the modeling process. These model 

translators treat the model just as a blueprint of the 

source code providing no meaningful abstraction 

gain. For example, several UML2 tools implement a 

one-to-one mapping between model and source 

code elements: modeling is thus just "graphical 

coding". In this case, there is no advantage in 

choosing a programming language exhibiting 

particular properties: the generated code is used 

simply as an intermediate representation between 

model and object code and no additional verification 

activities are performed on it. 

The second observation concerns the preservation 

of model-level properties at source-level. This has 

been done by providing empirical evidence that the 

code generator has been developed with care and 

has undergone adequate testing. By contrast, 

formally proving that properties are preserved from 

model to source increases confidence in the model 

translator and in verification activities performed 

directly on the model. 

The third observation is that going from model to 

object-code is done in two explicit steps: first the 

source is generated and then it is compiled to object 

code. In other terms, source code is an explicit 

artifact of the development process. This requires 

explicit configuration management of source code, 

even if it could be desirable to treat it like any other 

intermediate representation generated during the 

compilation process.   

In this paper we propose a methodological and 

technical approach to circumvent some of the 

limitations described above. In particular, we focus 

on end-to-end property preservation and cohesion of 

the whole model compilation chain. While we fully 

acknowledge the importance of promoting model-

based development as a mean for abstraction, we 

intend to address this specific topic on a separate 

work.   

The approach described in this paper focuses on 

finding a formal and executable intermediate 

representation for a model. Such intermediate 

representation is used (1) to demonstrate that model 

properties are preserved; (2) to complement 

verification activities for the target platform; and (3) 

to compile the model to object code. Within this 

paper, we intend to explain why this approach would 

be of benefit in the development of model compilers 

in the high-integrity domain, with particular attention 

for application certification and tool qualification in 

the context of the DO-178 standard [18]. 

 

2. Overview of Modelling Languages 

In this section we provide a brief overview of some 

important modeling languages for high-integrity 

embedded systems and evaluate whether their 

compilation chains suffer from the limitations 

described in the introduction.  
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2.1 UML2, SysML and MARTE 

UML2 [1] is a general purpose graphical modeling 

language for object-oriented systems. The language 

is particularly suited to describe structural properties 

of systems – like components structure, services and 

interactions, state machines and deployment. In 

particular UML2 provides a graphical representation 

of a program’s architecture (i.e. the packages or 

namespaces, the types or classes, and the program 

operations).  

This graphical representation is a blueprint where 

relationships among types and classes have been 

made clear. This representation is more human-

readable than its textual counterpart (“a picture is 

worth a thousand words”). When used in this fashion 

UML2 is often complemented with textual 

representation for operation implementation (here a 

short text is worth a thousand pictures). The one 

pragmatic drawback when switching between the 

graphical and textual paradigm is at the environment 

level: UML2 tools are usually better at handling 

diagrams than editing text. 

To increase the expressiveness of UML2 diagrams, 

it is possible to use an abstract action language: a 

high-level and platform-independent textual 

language to describe algorithmic behavior. The OMG 

is currently standardizing such a language. UML2 

also relies on OCL (Object Constraint Language) to 

express constraints such as methods pre/post 

conditions, type invariants, and assertions.  

UML2 has a well defined platform-independent 

semantics. The UML2 standard defines the intended 

static and dynamic semantics and deliberately gives 

no indication on how such semantics should be 

implemented. Presently, the limitation of UML2 is its 

uncontrolled and complex multiple-view modeling 

space. A system may be modeled in UML2 from 

different overlapping viewpoints or, in more common 

terms, diagrams. Unfortunately, the standard does 

not provide clear indications on how to guarantee 

consistency among views. To guarantee view 

consistency, one limits the views used to non-

overlapping ones. See [2] for a discussion on the 

UML2 diagrams needed to model a complete system 

while avoiding view overlap.  

Code generation strategies for UML2 usually treat 

the model as a blueprint of the code: model 

elements are mapped to source via a one-to-one 

mapping. From this perspective, the target 

programming language is not particularly important 

since no methodological added value comes from 

targeting a specific language. Property preservation 

at source-level is difficult to demonstrate as some of 

these languages are hard to analyze formally and 

because most programming languages have no 

direct way to map OCL constraints, making it difficult 

to prove that dynamic and static model-level 

constraints are respected in the translated sources. 

SysML [3] is a UML2-derived language used to 

describe industrial systems with particular emphasis 

on system-level components interaction and hybrid 

systems modeling. MARTE [4] describes the 

concurrent execution in both platform-independent 

and platform-specific terms. The platform-specific 

semantic elements of MARTE can be used for 

schedulability and other types of concurrent system 

analysis. This subset of MARTE integrates AADL [5] 

via the UML profiling mechanism. 

 

2.2 Simulink and Stateflow 

Simulink and Stateflow [6] are used to model control 

systems via block diagrams (for data flow) and 

hierarchical state machines (for state-based 

behaviour) with an emphasis on mathematical 

equations. Differently from UML2-based tools, 

Simulink and Stateflow raise abstraction to the level 

of control theory and thier model translators employ 

a more complex code generation strategy translating 

a set of equations into a list of sequential operations 

with causal and temporal dependencies. Simulink 

and Stateflow model translators, however, do not 

provide evidence of property preservation and elide 

differences in mathematical semantics between 

model-space and target hardware. 

 

3. Introducing Verifying Model Compilers 

To improve the state-of-the-art a verifying model 

compiler would: (1) provide formal evidence that 

model properties are preserved in the model-to-

source translation; (2) perform target-dependent 

verification activities which cannot be easily done at 

model level; and (3) wrap the whole translation chain 

in a single logical tool.  
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3.1 Property Preservation 

Modeling languages are particularly well suited for 

the formalization and verification of structural 

properties (safety properties of state machines, 

determinism of concurrent models, ...). A limitation of 

today’s model translation technologies is the lack of 

formal evidence when it comes to property 

preservation in the refinement process from model to 

sources. The core reason for such limitation lies with 

target programming languages which are executable 

but not formally analyzable. In practice, the target 

programming language cannot formalize the 

properties expressed at model-level: such properties 

are “lost in translation”. 

The approach chosen for verifying model compilers 

is to target formal programming languages which are 

both executable and analyzable. Such programming 

languages should be able to represent the properties 

formalized at model level and permit their proof at 

source-level.  Some of the properties we are 

interested in are: 

 Information and data flow contracts: how 

components share data and information. 

 State machine properties such as safety, 

completeness, and determinism. 

 Design-by-contract in the form of pre/post-

conditions, invariants, and assertions. 

 Determinism and analyzability of concurrent 

execution. 

In section 4 we will analyze several target languages 

(SPARK/Ada, ACSL/C, JML/Java, Spec#/C#) and 

evaluate them in terms of property preservation, 

soundness of proving technology, efficiency, and 

interfacing abilities with other languages. This last 

point is significant as some components of the final 

application may be handcrafted possibly because of 

reuse or outsourcing. 

 

3.2 Complementing Verification Activities 

Verifying model compilers complement model-level 

verification with formal proofs at source-level. In fact, 

several crucial characteristics of a complete system 

can be proved only at source-level. For example, 

consider platform-specific properties such as 

absence of overflow, array-out-of-bound, or stack 

overflow errors: proving such properties requires 

knowledge of the implementation semantics and 

may not be provable at model-level – even in the 

presence of fully expressive abstract action 

languages. This need for source-level analysis to 

verify target-specific properties requires targeting a 

programming language for which sound proof 

techniques exist. 

Errors detected at source-level should be either fed 

back into the model (e.g. an overflow may imply that 

a computation in the model diverges) or are due to 

errors in the model compiler implementation. 

Absence of run-time errors in the generated sources 

reinforces confidence in the model compiler. In both 

cases the modeler need not understand the 

intermediate language representation used for 

formal verification. In section 4 we evaluate possible 

target programming languages from this perspective. 

  

3.3 A Single Logical Tool 

From a technical perspective, current model 

translation techniques separate source code 

generation from traditional source-to-object 

compilation. This strategy forces the modeler to 

regard source code as an explicit product of the 

development process and thus subject to 

configuration management, verification and 

traceability. To remove these source-centric 

activities, model-to-object translation should be 

wrapped in a single logical tool. A verifying model 

compiler would hide intermediate source code 

generation and proofs from the modeler in the same 

way a conventional compiler hides semantic analysis 

and intermediate code generation from 

programmers. Furthermore, by wrapping the whole 

model compilation chain in a single logical tool, it is 

easier to cross-compile a model, execute it, and 

debug it on the target hardware (or simulator). This 

approach is orthogonal to model execution/debug 

via interpretation on an abstract (UML) virtual 

machine. 

As a final note, a verifying model compiler should 

generate appropriate hooks where foreign code may 

be interfaced to incorporate existing or sub-

contracted components. 

 

4. Evaluation of Possible Target Languages 

As stated in the previous section, the intermediate 

representation generated by a model compiler shall: 
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1. Be unambiguous. 

2. Guarantee that the model semantics is 

preserved in the transformation to ensure that 

verification activities performed at the model 

level apply also to the final executable program. 

3. Permit additional target-dependent static 

verification activities to be performed, such as: 

checking for absence of run-time errors, 

verifying conformance to design contracts 

(pre/post conditions, invariants, etc.), analyzing 

stack size requirements, and computing worst-

case execution time. 

Point 1 says that the static and run-time semantics of 

the target language shall be well defined. Point 2 

says that the chosen target programming language 

must be rich enough to represent most (if not all) 

semantic constructs of the input model, possibly 

including formally expressed properties. Point 3 says 

that verification tools for the chosen programming 

language must exist to complement the verification 

activities performed at the model level. 

Contrary to the common practice, the developer of 

the model compiler, and not the end users, should 

choose the target programming language of a model 

compiler. This choice has a great impact on the 

development of a sound model compiler and on the 

possibility of qualifying it with respect to appropriate 

industrial standards (ex. DO-178). We return to this 

specific point in section 5. 

Considering the input modeling language of interest 

(the UML-centric family and Simulink/Statflow) and 

due to the requirements above, our candidate target 

programming languages are: 

1. SPARK: SPARK [8] is a subset of Ada 

augmented with annotations to describe 

contracts for information/data flow and behavior 

(pre/post conditions, invariants). Contracts can 

be formally proved through automated tools. 

2. C and the ANSI C Specification Language 

(ACSL): ACSL is an annotation conceptually 

similar to SPARK annotations. Contracts can be 

formally proved via automated tools, for 

example in Frama-C [9]. 

3. Java and the Java Modeling Language (JML). 

JML [10] is an annotation language to specify 

the behavior of Java programs. It is used to 

improve both static and dynamic checks for 

Java programs. Contracts can be formally 

proved using the ESC/Java2 theorem prover 

[10]. 

4. Spec# [11], an extension to the C# 

programming language to describe and formally 

prove behavioral contracts of C# programs. 

The choice of the target programming language is 

strongly connected to the availability of a 

conventional compiler presenting the appropriate 

characteristics. In particular, the compiler shall: 

 Target the chosen hardware target. 

 Produce efficient object code. 

 Require minimal run-time libraries. The time or 

space overhead induced by the run-time 

support may cause a discrepancy between the 

results of analysis performed at the modeling or 

programming language level and empirical 

evidence. For example, consider a compiler 

targeting a virtual machine that includes a 

thread to perform garbage collection: this thread 

is present neither in the model nor in the 

intermediate source-level representation, 

complicating the timing analysis. 

 Guarantee some form of traceability between 

source code and object code: this requirement 

derives from international standards for high-

integrity embedded systems development such 

as DO-178B for commercial avionics.  

We cannot thus evaluate programming languages 

and their compilers separately, but we shall instead 

treat them a whole.  

The fitness of a programming language as target of 

a model compiler is evaluated based on three 

criteria: (i) the programming language coverage of 

the semantic needs for modeling language described 

above, (ii) the kinds of static verification supported at 

source code level and (iii) the availability of 

compilers for the domain of interest.  

SPARK supports the description and proof of 

data/information flow and behavioral contracts. 

Concurrency is supported with first-class language 

features and annotations to prove absence of 

deadlocks, race conditions and priority ceiling 

violations. It has a focus on proving absence of run-

time errors such as numeric overflow or out-of-bound 

array indexes. It has a limited support for object-

oriented semantics: polymorphism is outside the 

language semantics. The SPARK theorem prover is 
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sound. SPARK is compiled to object code using 

standard Ada compilers: conventional compilers with 

the properties described above are available and all 

Ada compilers generate equivalent object code 

starting from the same SPARK program. Since 

SPARK is based on Ada, its interfacing with other 

languages is pretty straightforward. 

C and ACSL present characteristics similar to 

SPARK, with the main difference being the lack of 

support for concurrency. The typing system for C is 

much less expressive than the SPARK one: the C 

and ACSL representation of a given semantics can 

be much more verbose than the corresponding 

SPARK one. For example, SPARK can directly 

express type properties such as the minimal and 

maximal value for an integer; while ACSL requires 

annotations (logic formulae) for each single variable 

or formal parameter. This difference is caused by the 

different roots of the two languages: SPARK derives 

from Ada, which has an expressive typing system; 

ACSL is based on C which is extremely poor (and 

platform-dependent) when describing types. Sound 

theorem provers for ACSL exist, such as Frama-C 

[9]. C and ACSL are compiled to object code using C 

compilers: conventional compilers with the properties 

described above exist. Interfacing C with other 

languages is straightforward. 

Java and JML support formal specification and proof 

of properties on object-oriented programs using 

polymorphism. ESC/Java2 is, by its own design, an 

unsound theorem prover. The language does not 

provide advanced support for numeric types and 

their analysis. The language can rely on the 

concurrency features described by the Real-Time 

Java and Safety Critical Java initiatives, which are 

conceptually similar to those present in SPARK; 

however, no specific JML annotations exist for such 

concurrency features. A Java implementation may 

include a virtual machine to execute, increasing the 

semantic distance between the input for analysis and 

the actual executable.  

Spec# supports formal specification and proof of 

properties for object-oriented programs using 

polymorphism. The language does not provide 

advanced support to describe and analyze numeric 

types, and it lacks concurrency features appropriate 

for the domain of interest. At the moment of writing, 

Spec# requires a compiler targeting a .NET 

implementation, making it unsuitable for high-

integrity embedded systems. 

Language Evaluation 

SPARK 

Expressivity: ++ 

Static verification: ++ 

Compilation: +++ 

C/ACSL (Frama-C) 

Expressivity: + 

Static verification: ++ 

Compilation: +++ 

Java/JML 

Expressivity: ++ 

Static verification: + 

Compilation: ++ 

Spec# 

Expressivity: ++ 

Static verification: ++ 

Compilation: + 

 

The summarized results of our evaluation are: 

 SPARK supports design-by-contract, numerics 

and concurrency but has a limited support for 

object orientation. It uses a sound theorem 

prover. It is compiled to efficient object code. 

 C and ACSL support design-by-contract, but 

have a limited supports for numerics and object-

orientation; they do not support concurrency. A 

sound theorem prover is available. It is 

compiled to efficient object code. 

 Java and JML support design-by-contract and 

object orientation. They do not support 

advanced numeric types or concurrency. Their 

theorem prover is unsound. The compilation 

process comes with a significant run-time 

system and does not lead to very efficient code. 

 Spec# supports design-by-contract and object 

orientation. It does not support advanced 

numeric types nor concurrency. Its theorem 

prover is sound.. At the time of writing, no 

compiler apt for the domain of interest exists. 

The result of our analysis does not identify a clear 

winner, even if SPARK and C/ACSL are probably the 

most suitable solutions for the domain of interest. 

The main limit of these languages is the lack of 

support for object-oriented features. 

 

4.1 Examples of a SPARK Verifying Model Compiler 

Usage 

In this section we provide some simple examples on 

how the verifying model compiler philosophy can be 

of benefit in the development of high-integrity 
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software. The first two examples target Stateflow 

and Simulink models, while the third and fourth focus 

on Executable UML models.  

The first example is taken from the February 2010 

issue of "Communication of the ACM" [12]. In [12] 

the authors use a separate formal specification 

language to model the behavior of a microwave oven 

and prove a set of properties on it via model 

checking. A typical property is: "if the oven is 

running, then the door is closed". The control 

algorithm of the microwave oven is modeled in 

Stateflow. The proof technology used in [12] is 

NuSMV [13]. To demonstrate that the property was 

not satisfied by the input model and to produce a 

counter example, the NuSMV theorem prover 

produced and evaluated 9.8x10
6
 states.  

The second example is taken from a Simulink model 

to implement the control algorithm for a window 

manager to be used in heads-up and heads-down 

displays for next-generation commercial aircraft [19]. 

Among the properties proved on the Simulink model, 

the most interesting are related to the logic of 

selecting the most appropriate unit to display the 

information to the user. The properties were again 

proved at model level by using model checking 

techniques. 

Our main goal was to evaluate if we could translate 

the model and properties of interest in SPARK so as 

to use a unique representation to feed to the proof 

engine and the traditional compiler. Following our 

verifying model compiler vision, we wanted to (i) 

decrease the semantic distance between the 

executable and its formal specification used to prove 

properties and (ii) increase the confidence that the 

source code representation implements the model 

semantics by proving that the properties proved at 

model level still hold at source level. It must be noted 

that the SPARK proving technology is based on 

abstract interpretation and deductive verification 

rather than model checking. 

We translated both the Stateflow model of [12] and 

the Simulink model of [19] in SPARK and added the 

properties of interest as post conditions of the 

subprogram implementing, respectively, the state 

machine logic and the control algorithm. For the 

Stateflow model, we were also able to fully model 

the state machine logic as a concatenation of logic 

expressions (again, as part of the post condition of 

the subprogram implementing the state machine 

logic). We used a prototype of the Simulink and 

Stateflow Ada back-end based on the Gene-Auto 

technology [15] and manually added SPARK 

annotations a posteriori on the generated code. The 

process of manually adding annotations was 

straightforward and we expect their automatic 

generation to be likewise. The SPARK code was 

translated into, respectively, 50 and 38 verification 

conditions. It is included in an extended version of 

this paper on the AdaCore web site [26]. We used a 

development version of the SPARK technology 

which can be coupled with the SMT solvers through 

the Victor translator [29]. 

The SPARK technology was able to prove the same 

properties and detect the same violations detected 

by the technology used in the original papers. 

SPARK was also able to provide precise conditions 

under which the violated properties do not hold. 

Such conditions are equivalent to the counter 

example produced by the NuSMV model checker. In 

addition, we were also able to prove that the 

properties of interest hold when the input model is 

slightly changed, again as suggested in the original 

papers. SPARK was of course able to prove also the 

absence of run-time errors, a task at which model 

checkers are usually not particularly effective. 

The last two examples we list focus on the proof of 

absence of run-time errors in the code generated 

from an Executable UML model. Such experiments 

were successfully carried out by AdaCore clients 

using model compilers targeting SPARK on 

commercial applications in the defense [16] and 

energy domains [17] using different Executable UML 

modeling environments (respectively Mentor 

Graphics BridgePoint and Kennedy Carter iUML). In 

the cited projects, the generation of SPARK from 

Executable UML models permitted a zero-cost 

formal verification of absence of run-time errors in 

the functionalities encoded using an abstract action 

language which manipulates Executable UML 

elements. In particular, no specific constraints were 

imposed on the modeling standard to accommodate 

the generation of SPARK code and all required 

annotations were automatically generated. We 

acknowledge that this approach defeats the use of 

SPARK as a design-by-contract tool: the contracts 

are inferred automatically from the implementation in 

Executable UML. However, the purpose for the use 

of SPARK in this context was the proof of absence of 

run-time errors, rather than partial correctness: from 
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this point of view, the SPARK model compilers were 

extremely successful in complementing model-level 

verification activities with source level formal 

verification without requiring any modification to the 

users' modeling practice. 

  

5. Developing Verifying Model Compilers 

In the previous section we provided evidence that 

the verifying model compiler vision is feasible and 

has already been applied in industrial projects. We 

now focus on the evaluation of the impact of using 

formal programming languages as target for the 

model compilation chain in terms of: 

 Development of the model compiler itself. 

 Qualification of the model compiler in a DO-178 

context. 

 Certification in a DO-178 context of an 

application including generated code. 

Our feedback derives from our involvement with the 

Gene-Auto consortium (ITEA 05018, [14]) for the 

development of a SPARK back-end for a sound 

subset of Simulink and StateFlow. 

 

5.1 Impact on Model Compiler Development 

While being constrained by SPARK semantic and 

syntactic limitations increased the initial definition of 

the code generation strategy, the use of a formal 

programming language as target for a model 

compiler caused surprising benefits during the 

development of the latter. The generated code 

produced by the prototype SPARK back-end for 

Gene-Auto had to be compilable and pass a small 

formal verification test. This requirement led to the 

discovery of several inconsistencies within the whole 

model compilation chain, including the part shared 

with the back-end for the C programming language. 

The errors we found included uninitialized or useless 

variables, dead code and unnecessary statements 

(for example, an if statement statically evaluable to 

False or True). Such discoveries permitted to greatly 

improve the Gene-Auto model compiler, with 

benefits for both the SPARK and C back-ends. In 

this particular case the same errors could have been 

caught by less formal verification tools (for example 

CodePeer [27] and Coverity Static Analysis [28]) 

which do not require the use of stringent semantics 

as for SPARK. However, the use of a formal 

language is still of benefit because it leaves the door 

open for more advanced formal analysis, in 

particular related to the absence of run-time errors 

and partial correctness (see the following sections).  

 

5.2  Impact on DO-178 Tool Qualification 

DO-178 does not discuss directly if/how the 

qualification of a model compiler could alleviate the 

verification activities on the generated code. An 

accepted approach in industrial practice (see for 

example [32]) is however to formalize low-level 

requirements in a model and rely on a model 

compiler qualified as development tool to:  

1. Perform some verification activities (for example 

testing and structural coverage) on the model, 

typically via simulation: verification at a higher 

abstraction level is expected to be less costly. 

2. Skip some verification activities on the source 

code (for example compliance with low-level 

requirements) because the generated code is 

expected to be faithful to its model-level 

specification. 

In order to rely on model simulation instead of testing 

of executable code for verification activities, it is also 

usually necessary to produce evidence that the 

generated code is compiled to object code 

preserving the same functional properties. The 

whole qualification process of a development tool is 

extremely costly: for Gene-Auto the estimated 

qualification cost is around eight person years. The 

high initial investment in qualifying a model compiler 

as a development tool has been so far a barrier to 

the commercial availability of qualified model 

compilers.  

In this paper, we propose an alternative path which 

could be considered to alleviate the qualification 

costs of a model compiler. Our approach does not 

consider for the moment how to provide evidence of 

property preservation from the generated source 

code to the (cross-)compiled object code. It is 

however worth noting that it is usually simpler to 

provide such evidence for formal programming 

languages because they employ a much simpler 

semantics and thus do not exercise particularly 

advanced or obscure features of a 

language/compiler. 

The strategy we propose here to alleviate the cost of 

qualifying a model compiler is conceptually similar to 
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the "Unit Proof" methodology promoted by Airbus 

[25], which permits to eliminate most verification 

activities on source code if (i) all low-level 

requirements are expressed as formal properties, (ii) 

the formal verification framework is qualified 

accordingly to DO-178 as a verification tool. In a DO-

178 context, qualifying a verification tool (like a 

theorem prover) is much less costly than qualifying a 

development tool (like a model compiler). The same 

applies also to Tool Qualification Levels in DO-178C. 

The strategy we propose requires to: 

1. Express low-level requirements at model-level, 

potentially using formal specification of 

properties. Formal specification of properties is 

not always necessary: for example, the logic of 

a state machine by itself formalizes low-level 

requirements without requiring the explicit 

production of formal properties. This point 

requires a modeling language able to model 

formal properties: this is the case of both 

Simulink/Stateflow and Executable UML (via 

OCL).  

2. Verify that all model-level properties are 

correctly translated to the formal programming 

language targeted by the model compiler. 

Additional properties may be produced in the 

source code, for example to represent the logic 

of a state machine as a post-condition (see also 

the source code available in the extended 

version of this paper [26]). 

3. Prove that all model level properties hold at 

source level. As show in section 4.1, we were 

able to formally express and prove model-level 

properties on SPARK programs. 

4. Qualify the formal verification technology used 

at point 3 as a verification tool. 

If the conditions above are all met, we can formally 

demonstrate that the generated source code 

complies with the low-level requirements formalized 

at model level, without qualifying the model compiler 

as a development tool. We thus believe that the 

verifying model compiler vision could permit to 

benefit of the advantages typical of a qualified model 

compiler (reduction of verification activities on source 

code) without actually requiring the qualification of 

the model compiler itself. 

5.3  Impact on DO-178 Application Certification 

The use of formal programming languages as a 

mean to decrease the cost of unit testing is 

increasing in the high-integrity domain: consider, in 

addition to SPARK, the use of tools like Caveat [20] 

and Astrée [21]. By targeting a formal programming 

language, we guarantee that the generated source 

code can be safely integrated with other (legacy) 

high-integrity components written in the same formal 

language. For example, the generation of SPARK 

assures that the same level of safety can be 

maintained across different software components 

and that global, application-level analysis can be 

performed. If we targeted classical programming 

languages, we would have limited the formal 

verification to a component-by-component basis and 

required manual analysis for the integration of 

manually written SPARK and generated Ada code. 

The model compiler vision fully guarantees that the 

proven advantages of using formal programming 

languages in a DO-178 certification context can be 

applied even when the application code is partially 

generated from modeling languages.  

 

6. Related work 

The use of intermediate (pivot) languages for formal 

verification has been already proposed and 

implemented in TOPCASED with Fiacre [22]. 

However, Fiacre is a verification-oriented pivot 

language: its use consists in being generated from 

modeling languages like AADL to verify some 

specific properties. The implementation of the source 

model into source code is then produced with a 

separate code generator which has neither visibility 

nor knowledge of Fiacre. Proof of semantic 

consistency between the generated source code and 

the formal model used for verification thus remains 

an open point. With verifying model compilers the 

verification and implementation-oriented views are 

consistent by construction because they collapse to 

the same representation. Such representation, for 

example a SPARK program, is indeed analyzable, 

executable and can be compiled to object code with 

mature technologies. 

Another interesting approach closer to the verifying 

model compiler vision is the one proposed by ClawZ 

[23]. It provides formal evidence of semantic 

preservation of the refinement process from Simulink 

models to SPARK source code. This evidence is 
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provided by translating both the Simulink model and 

SPARK program into Z schemas and formally 

proving their equivalence. To achieve this result, it 

was necessary to define a formal Z representation 

for a subset of Simulink; a Z representation for 

SPARK is, on the other side, already available [24]. 

The main advantage of ClawZ is its verification tool 

nature, meaning that its DO-178 qualification would 

cost less than qualifying a code generator (which is a 

development tool). In addition it does not need to 

have any internal knowledge of the code generator, 

as it just copes with the initial input (the model) and 

the final output (the SPARK code). The approach 

proposed by ClawZ is conceptually similar to the one 

we propose, in the sense they both require formal 

programming languages to be the target of code 

generation: it is not a coincidence that SPARK is the 

target language of ClawZ. At this stage, the main 

advantage of the model compiler vision is the 

avoidance of using additional explicit formal 

representations (like Z) to prove property 

preservation. Recent advancements [33] on this 

technology suggest that the Z representations can 

be hidden. 

Formal evidence of property preservation can also 

be obtained by construction if the model compiler 

itself is formally developed/verified. This is the 

approach applied for the CompCert [30] compiler 

and for the block sequencer in Gene-Auto. Both 

technologies were developed using Coq [31]. The 

main limitation of this approach is that the complexity 

and cost of the formal development may drastically 

limit the scope of the technology. CompCert for 

example has only PowerPC and ARM back-ends, 

has limited optimization features and contains 

several functionalities (for example I/O and parsing) 

which are not formally specified/verified. The Gene-

Auto block sequencer is specified with 4500 SLOC 

of Coq (including 130 theorems) [34] and represents 

just a single step in the model compilation chain. 

The last alternative solution is to consider just 

verification of absence of run-time errors on the 

generated code using tools like Polyspace or 

CodePeer. This approach clearly does not provide 

any evidence of property preservation. The same of 

course applies when trying to infer the faithfulness of 

the generated code to the model by simply 

comparing test results obtained via model simulation 

and execution of the generated code. 

 

7. Conclusion 

In this paper we have discussed the vision for 

verifying model compilers. Verifying model compilers 

promise improvements over the state-of-the-art in 

code generation by targeting a formal programming 

language which (i) can automatically provide 

evidence that property proved at model level still 

hold at source level and (ii) can complement model-

level verification activities with source-level formal 

verification of platform-specific properties. We 

supported our point-of-view with limited experiments 

for Simulink and Stateflow models and with 

industrial-scale applications for Executable UML 

models. All experiments used SPARK as a target 

language. 

In this paper we also evaluated different 

programming languages with respect to the 

requirement of being used as targets of a verifying 

model compiler. The SPARK and Frama-C 

frameworks emerged as the most effective choices. 

Finally, we discussed the impact of targeting formal 

programming languages from several points of view, 

in particular (i) development process of a model 

compiler, (ii) DO-178 tool qualification and (iii) DO-

178 application certification. The deployment of 

verifying model compilers brings benefit for all 

aspects above. 

From a conceptual standpoint, the most valuable 

outcome of our discussion is the positioning of 

traditional programming languages within a model-

centric development process. In contexts outside the 

high-integrity domain, source code may well be 

considered as a derived artifact with no interesting 

properties. On the contrary, if property preservation 

and platform-specific verification are significant 

concerns, the formal programming language plays a 

pivotal role within a model-based compilation chain, 

even though such intermediate representation may 

not be directly visible to the modeler. This requires 

finding a semantic mapping for the modeling 

language which lends itself to formal verification via 

automated theorem proving. Considering this aspect, 

it is important to note that the dominant needs when 

developing a (verifying) model compiler shall be 

those expressed by the developers of the model 

compiler rather than those of the final users. Given 

the cost of qualification/certification and that mature 

technologies exist to easily integrate modules written 

in different programming languages, there is no 
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reason to target a less-than-ideal formal 

programming language. 

Formal programming languages and proof 

technologies may of course need to be enhanced to 

extend the set of properties they can prove and to 

ensure that properties can be preserved from model 

to sources. If this technical development is 

accomplished, verifying model compilers will ease 

the adoption of the model-driven paradigm, increase 

the confidence in modeled application, and improve 

the overall development process. 
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