
 Page 1/10

Towards Verifying Model Compilers

Matteo Bordin1, Franco Gasperoni2

1: AdaCore, 46 rue d'Amsterdam 75009 Paris (FRANCE), bordin@adacore.com
2: AdaCore, 46 rue d'Amsterdam 75009 Paris (FRANCE), gasperoni@adacore.com

Abstract: In this paper we propose a methodological

and technical approach to develop model compilers

which provide formal proof of semantic preservation

and complement model-level verification activities

with formal analysis on the generated source code.

Our paper also details which characteristic a

programming language shall exhibit to be used as

target of a model compiler. Finally, we evaluate the

impact of using formal programming languages on

the development and qualification of model

compilers.

Keywords: Code generation, formal methods,

model-driven development.

1. Introduction

Model-driven development is a major innovation

vector for the construction of high-integrity

embedded systems. The paradigm has been

successfully applied to several large projects in the

last decade, showing the advantages of shifting from

source-centric to model-centric processes.

Regardless of success stories, model-based

approaches have failed to completely replace source

code in the application life cycle. Why?

The first observation is that some model

transformation chains have failed to provide clear

added-value for the modeling process. These model

translators treat the model just as a blueprint of the

source code providing no meaningful abstraction

gain. For example, several UML2 tools implement a

one-to-one mapping between model and source

code elements: modeling is thus just "graphical

coding". In this case, there is no advantage in

choosing a programming language exhibiting

particular properties: the generated code is used

simply as an intermediate representation between

model and object code and no additional verification

activities are performed on it.

The second observation concerns the preservation

of model-level properties at source-level. This has

been done by providing empirical evidence that the

code generator has been developed with care and

has undergone adequate testing. By contrast,

formally proving that properties are preserved from

model to source increases confidence in the model

translator and in verification activities performed

directly on the model.

The third observation is that going from model to

object-code is done in two explicit steps: first the

source is generated and then it is compiled to object

code. In other terms, source code is an explicit

artifact of the development process. This requires

explicit configuration management of source code,

even if it could be desirable to treat it like any other

intermediate representation generated during the

compilation process.

In this paper we propose a methodological and

technical approach to circumvent some of the

limitations described above. In particular, we focus

on end-to-end property preservation and cohesion of

the whole model compilation chain. While we fully

acknowledge the importance of promoting model-

based development as a mean for abstraction, we

intend to address this specific topic on a separate

work.

The approach described in this paper focuses on

finding a formal and executable intermediate

representation for a model. Such intermediate

representation is used (1) to demonstrate that model

properties are preserved; (2) to complement

verification activities for the target platform; and (3)

to compile the model to object code. Within this

paper, we intend to explain why this approach would

be of benefit in the development of model compilers

in the high-integrity domain, with particular attention

for application certification and tool qualification in

the context of the DO-178 standard [18].

2. Overview of Modelling Languages

In this section we provide a brief overview of some

important modeling languages for high-integrity

embedded systems and evaluate whether their

compilation chains suffer from the limitations

described in the introduction.

 Page 2/10

2.1 UML2, SysML and MARTE

UML2 [1] is a general purpose graphical modeling

language for object-oriented systems. The language

is particularly suited to describe structural properties

of systems – like components structure, services and

interactions, state machines and deployment. In

particular UML2 provides a graphical representation

of a program’s architecture (i.e. the packages or

namespaces, the types or classes, and the program

operations).

This graphical representation is a blueprint where

relationships among types and classes have been

made clear. This representation is more human-

readable than its textual counterpart (“a picture is

worth a thousand words”). When used in this fashion

UML2 is often complemented with textual

representation for operation implementation (here a

short text is worth a thousand pictures). The one

pragmatic drawback when switching between the

graphical and textual paradigm is at the environment

level: UML2 tools are usually better at handling

diagrams than editing text.

To increase the expressiveness of UML2 diagrams,

it is possible to use an abstract action language: a

high-level and platform-independent textual

language to describe algorithmic behavior. The OMG

is currently standardizing such a language. UML2

also relies on OCL (Object Constraint Language) to

express constraints such as methods pre/post

conditions, type invariants, and assertions.

UML2 has a well defined platform-independent

semantics. The UML2 standard defines the intended

static and dynamic semantics and deliberately gives

no indication on how such semantics should be

implemented. Presently, the limitation of UML2 is its

uncontrolled and complex multiple-view modeling

space. A system may be modeled in UML2 from

different overlapping viewpoints or, in more common

terms, diagrams. Unfortunately, the standard does

not provide clear indications on how to guarantee

consistency among views. To guarantee view

consistency, one limits the views used to non-

overlapping ones. See [2] for a discussion on the

UML2 diagrams needed to model a complete system

while avoiding view overlap.

Code generation strategies for UML2 usually treat

the model as a blueprint of the code: model

elements are mapped to source via a one-to-one

mapping. From this perspective, the target

programming language is not particularly important

since no methodological added value comes from

targeting a specific language. Property preservation

at source-level is difficult to demonstrate as some of

these languages are hard to analyze formally and

because most programming languages have no

direct way to map OCL constraints, making it difficult

to prove that dynamic and static model-level

constraints are respected in the translated sources.

SysML [3] is a UML2-derived language used to

describe industrial systems with particular emphasis

on system-level components interaction and hybrid

systems modeling. MARTE [4] describes the

concurrent execution in both platform-independent

and platform-specific terms. The platform-specific

semantic elements of MARTE can be used for

schedulability and other types of concurrent system

analysis. This subset of MARTE integrates AADL [5]

via the UML profiling mechanism.

2.2 Simulink and Stateflow

Simulink and Stateflow [6] are used to model control

systems via block diagrams (for data flow) and

hierarchical state machines (for state-based

behaviour) with an emphasis on mathematical

equations. Differently from UML2-based tools,

Simulink and Stateflow raise abstraction to the level

of control theory and thier model translators employ

a more complex code generation strategy translating

a set of equations into a list of sequential operations

with causal and temporal dependencies. Simulink

and Stateflow model translators, however, do not

provide evidence of property preservation and elide

differences in mathematical semantics between

model-space and target hardware.

3. Introducing Verifying Model Compilers

To improve the state-of-the-art a verifying model

compiler would: (1) provide formal evidence that

model properties are preserved in the model-to-

source translation; (2) perform target-dependent

verification activities which cannot be easily done at

model level; and (3) wrap the whole translation chain

in a single logical tool.

 Page 3/10

3.1 Property Preservation

Modeling languages are particularly well suited for

the formalization and verification of structural

properties (safety properties of state machines,

determinism of concurrent models, ...). A limitation of

today’s model translation technologies is the lack of

formal evidence when it comes to property

preservation in the refinement process from model to

sources. The core reason for such limitation lies with

target programming languages which are executable

but not formally analyzable. In practice, the target

programming language cannot formalize the

properties expressed at model-level: such properties

are “lost in translation”.

The approach chosen for verifying model compilers

is to target formal programming languages which are

both executable and analyzable. Such programming

languages should be able to represent the properties

formalized at model level and permit their proof at

source-level. Some of the properties we are

interested in are:

 Information and data flow contracts: how

components share data and information.

 State machine properties such as safety,

completeness, and determinism.

 Design-by-contract in the form of pre/post-

conditions, invariants, and assertions.

 Determinism and analyzability of concurrent

execution.

In section 4 we will analyze several target languages

(SPARK/Ada, ACSL/C, JML/Java, Spec#/C#) and

evaluate them in terms of property preservation,

soundness of proving technology, efficiency, and

interfacing abilities with other languages. This last

point is significant as some components of the final

application may be handcrafted possibly because of

reuse or outsourcing.

3.2 Complementing Verification Activities

Verifying model compilers complement model-level

verification with formal proofs at source-level. In fact,

several crucial characteristics of a complete system

can be proved only at source-level. For example,

consider platform-specific properties such as

absence of overflow, array-out-of-bound, or stack

overflow errors: proving such properties requires

knowledge of the implementation semantics and

may not be provable at model-level – even in the

presence of fully expressive abstract action

languages. This need for source-level analysis to

verify target-specific properties requires targeting a

programming language for which sound proof

techniques exist.

Errors detected at source-level should be either fed

back into the model (e.g. an overflow may imply that

a computation in the model diverges) or are due to

errors in the model compiler implementation.

Absence of run-time errors in the generated sources

reinforces confidence in the model compiler. In both

cases the modeler need not understand the

intermediate language representation used for

formal verification. In section 4 we evaluate possible

target programming languages from this perspective.

3.3 A Single Logical Tool

From a technical perspective, current model

translation techniques separate source code

generation from traditional source-to-object

compilation. This strategy forces the modeler to

regard source code as an explicit product of the

development process and thus subject to

configuration management, verification and

traceability. To remove these source-centric

activities, model-to-object translation should be

wrapped in a single logical tool. A verifying model

compiler would hide intermediate source code

generation and proofs from the modeler in the same

way a conventional compiler hides semantic analysis

and intermediate code generation from

programmers. Furthermore, by wrapping the whole

model compilation chain in a single logical tool, it is

easier to cross-compile a model, execute it, and

debug it on the target hardware (or simulator). This

approach is orthogonal to model execution/debug

via interpretation on an abstract (UML) virtual

machine.

As a final note, a verifying model compiler should

generate appropriate hooks where foreign code may

be interfaced to incorporate existing or sub-

contracted components.

4. Evaluation of Possible Target Languages

As stated in the previous section, the intermediate

representation generated by a model compiler shall:

 Page 4/10

1. Be unambiguous.

2. Guarantee that the model semantics is

preserved in the transformation to ensure that

verification activities performed at the model

level apply also to the final executable program.

3. Permit additional target-dependent static

verification activities to be performed, such as:

checking for absence of run-time errors,

verifying conformance to design contracts

(pre/post conditions, invariants, etc.), analyzing

stack size requirements, and computing worst-

case execution time.

Point 1 says that the static and run-time semantics of

the target language shall be well defined. Point 2

says that the chosen target programming language

must be rich enough to represent most (if not all)

semantic constructs of the input model, possibly

including formally expressed properties. Point 3 says

that verification tools for the chosen programming

language must exist to complement the verification

activities performed at the model level.

Contrary to the common practice, the developer of

the model compiler, and not the end users, should

choose the target programming language of a model

compiler. This choice has a great impact on the

development of a sound model compiler and on the

possibility of qualifying it with respect to appropriate

industrial standards (ex. DO-178). We return to this

specific point in section 5.

Considering the input modeling language of interest

(the UML-centric family and Simulink/Statflow) and

due to the requirements above, our candidate target

programming languages are:

1. SPARK: SPARK [8] is a subset of Ada

augmented with annotations to describe

contracts for information/data flow and behavior

(pre/post conditions, invariants). Contracts can

be formally proved through automated tools.

2. C and the ANSI C Specification Language

(ACSL): ACSL is an annotation conceptually

similar to SPARK annotations. Contracts can be

formally proved via automated tools, for

example in Frama-C [9].

3. Java and the Java Modeling Language (JML).

JML [10] is an annotation language to specify

the behavior of Java programs. It is used to

improve both static and dynamic checks for

Java programs. Contracts can be formally

proved using the ESC/Java2 theorem prover

[10].

4. Spec# [11], an extension to the C#

programming language to describe and formally

prove behavioral contracts of C# programs.

The choice of the target programming language is

strongly connected to the availability of a

conventional compiler presenting the appropriate

characteristics. In particular, the compiler shall:

 Target the chosen hardware target.

 Produce efficient object code.

 Require minimal run-time libraries. The time or

space overhead induced by the run-time

support may cause a discrepancy between the

results of analysis performed at the modeling or

programming language level and empirical

evidence. For example, consider a compiler

targeting a virtual machine that includes a

thread to perform garbage collection: this thread

is present neither in the model nor in the

intermediate source-level representation,

complicating the timing analysis.

 Guarantee some form of traceability between

source code and object code: this requirement

derives from international standards for high-

integrity embedded systems development such

as DO-178B for commercial avionics.

We cannot thus evaluate programming languages

and their compilers separately, but we shall instead

treat them a whole.

The fitness of a programming language as target of

a model compiler is evaluated based on three

criteria: (i) the programming language coverage of

the semantic needs for modeling language described

above, (ii) the kinds of static verification supported at

source code level and (iii) the availability of

compilers for the domain of interest.

SPARK supports the description and proof of

data/information flow and behavioral contracts.

Concurrency is supported with first-class language

features and annotations to prove absence of

deadlocks, race conditions and priority ceiling

violations. It has a focus on proving absence of run-

time errors such as numeric overflow or out-of-bound

array indexes. It has a limited support for object-

oriented semantics: polymorphism is outside the

language semantics. The SPARK theorem prover is

 Page 5/10

sound. SPARK is compiled to object code using

standard Ada compilers: conventional compilers with

the properties described above are available and all

Ada compilers generate equivalent object code

starting from the same SPARK program. Since

SPARK is based on Ada, its interfacing with other

languages is pretty straightforward.

C and ACSL present characteristics similar to

SPARK, with the main difference being the lack of

support for concurrency. The typing system for C is

much less expressive than the SPARK one: the C

and ACSL representation of a given semantics can

be much more verbose than the corresponding

SPARK one. For example, SPARK can directly

express type properties such as the minimal and

maximal value for an integer; while ACSL requires

annotations (logic formulae) for each single variable

or formal parameter. This difference is caused by the

different roots of the two languages: SPARK derives

from Ada, which has an expressive typing system;

ACSL is based on C which is extremely poor (and

platform-dependent) when describing types. Sound

theorem provers for ACSL exist, such as Frama-C

[9]. C and ACSL are compiled to object code using C

compilers: conventional compilers with the properties

described above exist. Interfacing C with other

languages is straightforward.

Java and JML support formal specification and proof

of properties on object-oriented programs using

polymorphism. ESC/Java2 is, by its own design, an

unsound theorem prover. The language does not

provide advanced support for numeric types and

their analysis. The language can rely on the

concurrency features described by the Real-Time

Java and Safety Critical Java initiatives, which are

conceptually similar to those present in SPARK;

however, no specific JML annotations exist for such

concurrency features. A Java implementation may

include a virtual machine to execute, increasing the

semantic distance between the input for analysis and

the actual executable.

Spec# supports formal specification and proof of

properties for object-oriented programs using

polymorphism. The language does not provide

advanced support to describe and analyze numeric

types, and it lacks concurrency features appropriate

for the domain of interest. At the moment of writing,

Spec# requires a compiler targeting a .NET

implementation, making it unsuitable for high-

integrity embedded systems.

Language Evaluation

SPARK

Expressivity: ++

Static verification: ++

Compilation: +++

C/ACSL (Frama-C)

Expressivity: +

Static verification: ++

Compilation: +++

Java/JML

Expressivity: ++

Static verification: +

Compilation: ++

Spec#

Expressivity: ++

Static verification: ++

Compilation: +

The summarized results of our evaluation are:

 SPARK supports design-by-contract, numerics

and concurrency but has a limited support for

object orientation. It uses a sound theorem

prover. It is compiled to efficient object code.

 C and ACSL support design-by-contract, but

have a limited supports for numerics and object-

orientation; they do not support concurrency. A

sound theorem prover is available. It is

compiled to efficient object code.

 Java and JML support design-by-contract and

object orientation. They do not support

advanced numeric types or concurrency. Their

theorem prover is unsound. The compilation

process comes with a significant run-time

system and does not lead to very efficient code.

 Spec# supports design-by-contract and object

orientation. It does not support advanced

numeric types nor concurrency. Its theorem

prover is sound.. At the time of writing, no

compiler apt for the domain of interest exists.

The result of our analysis does not identify a clear

winner, even if SPARK and C/ACSL are probably the

most suitable solutions for the domain of interest.

The main limit of these languages is the lack of

support for object-oriented features.

4.1 Examples of a SPARK Verifying Model Compiler

Usage

In this section we provide some simple examples on

how the verifying model compiler philosophy can be

of benefit in the development of high-integrity

 Page 6/10

software. The first two examples target Stateflow

and Simulink models, while the third and fourth focus

on Executable UML models.

The first example is taken from the February 2010

issue of "Communication of the ACM" [12]. In [12]

the authors use a separate formal specification

language to model the behavior of a microwave oven

and prove a set of properties on it via model

checking. A typical property is: "if the oven is

running, then the door is closed". The control

algorithm of the microwave oven is modeled in

Stateflow. The proof technology used in [12] is

NuSMV [13]. To demonstrate that the property was

not satisfied by the input model and to produce a

counter example, the NuSMV theorem prover

produced and evaluated 9.8x10
6
 states.

The second example is taken from a Simulink model

to implement the control algorithm for a window

manager to be used in heads-up and heads-down

displays for next-generation commercial aircraft [19].

Among the properties proved on the Simulink model,

the most interesting are related to the logic of

selecting the most appropriate unit to display the

information to the user. The properties were again

proved at model level by using model checking

techniques.

Our main goal was to evaluate if we could translate

the model and properties of interest in SPARK so as

to use a unique representation to feed to the proof

engine and the traditional compiler. Following our

verifying model compiler vision, we wanted to (i)

decrease the semantic distance between the

executable and its formal specification used to prove

properties and (ii) increase the confidence that the

source code representation implements the model

semantics by proving that the properties proved at

model level still hold at source level. It must be noted

that the SPARK proving technology is based on

abstract interpretation and deductive verification

rather than model checking.

We translated both the Stateflow model of [12] and

the Simulink model of [19] in SPARK and added the

properties of interest as post conditions of the

subprogram implementing, respectively, the state

machine logic and the control algorithm. For the

Stateflow model, we were also able to fully model

the state machine logic as a concatenation of logic

expressions (again, as part of the post condition of

the subprogram implementing the state machine

logic). We used a prototype of the Simulink and

Stateflow Ada back-end based on the Gene-Auto

technology [15] and manually added SPARK

annotations a posteriori on the generated code. The

process of manually adding annotations was

straightforward and we expect their automatic

generation to be likewise. The SPARK code was

translated into, respectively, 50 and 38 verification

conditions. It is included in an extended version of

this paper on the AdaCore web site [26]. We used a

development version of the SPARK technology

which can be coupled with the SMT solvers through

the Victor translator [29].

The SPARK technology was able to prove the same

properties and detect the same violations detected

by the technology used in the original papers.

SPARK was also able to provide precise conditions

under which the violated properties do not hold.

Such conditions are equivalent to the counter

example produced by the NuSMV model checker. In

addition, we were also able to prove that the

properties of interest hold when the input model is

slightly changed, again as suggested in the original

papers. SPARK was of course able to prove also the

absence of run-time errors, a task at which model

checkers are usually not particularly effective.

The last two examples we list focus on the proof of

absence of run-time errors in the code generated

from an Executable UML model. Such experiments

were successfully carried out by AdaCore clients

using model compilers targeting SPARK on

commercial applications in the defense [16] and

energy domains [17] using different Executable UML

modeling environments (respectively Mentor

Graphics BridgePoint and Kennedy Carter iUML). In

the cited projects, the generation of SPARK from

Executable UML models permitted a zero-cost

formal verification of absence of run-time errors in

the functionalities encoded using an abstract action

language which manipulates Executable UML

elements. In particular, no specific constraints were

imposed on the modeling standard to accommodate

the generation of SPARK code and all required

annotations were automatically generated. We

acknowledge that this approach defeats the use of

SPARK as a design-by-contract tool: the contracts

are inferred automatically from the implementation in

Executable UML. However, the purpose for the use

of SPARK in this context was the proof of absence of

run-time errors, rather than partial correctness: from

 Page 7/10

this point of view, the SPARK model compilers were

extremely successful in complementing model-level

verification activities with source level formal

verification without requiring any modification to the

users' modeling practice.

5. Developing Verifying Model Compilers

In the previous section we provided evidence that

the verifying model compiler vision is feasible and

has already been applied in industrial projects. We

now focus on the evaluation of the impact of using

formal programming languages as target for the

model compilation chain in terms of:

 Development of the model compiler itself.

 Qualification of the model compiler in a DO-178

context.

 Certification in a DO-178 context of an

application including generated code.

Our feedback derives from our involvement with the

Gene-Auto consortium (ITEA 05018, [14]) for the

development of a SPARK back-end for a sound

subset of Simulink and StateFlow.

5.1 Impact on Model Compiler Development

While being constrained by SPARK semantic and

syntactic limitations increased the initial definition of

the code generation strategy, the use of a formal

programming language as target for a model

compiler caused surprising benefits during the

development of the latter. The generated code

produced by the prototype SPARK back-end for

Gene-Auto had to be compilable and pass a small

formal verification test. This requirement led to the

discovery of several inconsistencies within the whole

model compilation chain, including the part shared

with the back-end for the C programming language.

The errors we found included uninitialized or useless

variables, dead code and unnecessary statements

(for example, an if statement statically evaluable to

False or True). Such discoveries permitted to greatly

improve the Gene-Auto model compiler, with

benefits for both the SPARK and C back-ends. In

this particular case the same errors could have been

caught by less formal verification tools (for example

CodePeer [27] and Coverity Static Analysis [28])

which do not require the use of stringent semantics

as for SPARK. However, the use of a formal

language is still of benefit because it leaves the door

open for more advanced formal analysis, in

particular related to the absence of run-time errors

and partial correctness (see the following sections).

5.2 Impact on DO-178 Tool Qualification

DO-178 does not discuss directly if/how the

qualification of a model compiler could alleviate the

verification activities on the generated code. An

accepted approach in industrial practice (see for

example [32]) is however to formalize low-level

requirements in a model and rely on a model

compiler qualified as development tool to:

1. Perform some verification activities (for example

testing and structural coverage) on the model,

typically via simulation: verification at a higher

abstraction level is expected to be less costly.

2. Skip some verification activities on the source

code (for example compliance with low-level

requirements) because the generated code is

expected to be faithful to its model-level

specification.

In order to rely on model simulation instead of testing

of executable code for verification activities, it is also

usually necessary to produce evidence that the

generated code is compiled to object code

preserving the same functional properties. The

whole qualification process of a development tool is

extremely costly: for Gene-Auto the estimated

qualification cost is around eight person years. The

high initial investment in qualifying a model compiler

as a development tool has been so far a barrier to

the commercial availability of qualified model

compilers.

In this paper, we propose an alternative path which

could be considered to alleviate the qualification

costs of a model compiler. Our approach does not

consider for the moment how to provide evidence of

property preservation from the generated source

code to the (cross-)compiled object code. It is

however worth noting that it is usually simpler to

provide such evidence for formal programming

languages because they employ a much simpler

semantics and thus do not exercise particularly

advanced or obscure features of a

language/compiler.

The strategy we propose here to alleviate the cost of

qualifying a model compiler is conceptually similar to

 Page 8/10

the "Unit Proof" methodology promoted by Airbus

[25], which permits to eliminate most verification

activities on source code if (i) all low-level

requirements are expressed as formal properties, (ii)

the formal verification framework is qualified

accordingly to DO-178 as a verification tool. In a DO-

178 context, qualifying a verification tool (like a

theorem prover) is much less costly than qualifying a

development tool (like a model compiler). The same

applies also to Tool Qualification Levels in DO-178C.

The strategy we propose requires to:

1. Express low-level requirements at model-level,

potentially using formal specification of

properties. Formal specification of properties is

not always necessary: for example, the logic of

a state machine by itself formalizes low-level

requirements without requiring the explicit

production of formal properties. This point

requires a modeling language able to model

formal properties: this is the case of both

Simulink/Stateflow and Executable UML (via

OCL).

2. Verify that all model-level properties are

correctly translated to the formal programming

language targeted by the model compiler.

Additional properties may be produced in the

source code, for example to represent the logic

of a state machine as a post-condition (see also

the source code available in the extended

version of this paper [26]).

3. Prove that all model level properties hold at

source level. As show in section 4.1, we were

able to formally express and prove model-level

properties on SPARK programs.

4. Qualify the formal verification technology used

at point 3 as a verification tool.

If the conditions above are all met, we can formally

demonstrate that the generated source code

complies with the low-level requirements formalized

at model level, without qualifying the model compiler

as a development tool. We thus believe that the

verifying model compiler vision could permit to

benefit of the advantages typical of a qualified model

compiler (reduction of verification activities on source

code) without actually requiring the qualification of

the model compiler itself.

5.3 Impact on DO-178 Application Certification

The use of formal programming languages as a

mean to decrease the cost of unit testing is

increasing in the high-integrity domain: consider, in

addition to SPARK, the use of tools like Caveat [20]

and Astrée [21]. By targeting a formal programming

language, we guarantee that the generated source

code can be safely integrated with other (legacy)

high-integrity components written in the same formal

language. For example, the generation of SPARK

assures that the same level of safety can be

maintained across different software components

and that global, application-level analysis can be

performed. If we targeted classical programming

languages, we would have limited the formal

verification to a component-by-component basis and

required manual analysis for the integration of

manually written SPARK and generated Ada code.

The model compiler vision fully guarantees that the

proven advantages of using formal programming

languages in a DO-178 certification context can be

applied even when the application code is partially

generated from modeling languages.

6. Related work

The use of intermediate (pivot) languages for formal

verification has been already proposed and

implemented in TOPCASED with Fiacre [22].

However, Fiacre is a verification-oriented pivot

language: its use consists in being generated from

modeling languages like AADL to verify some

specific properties. The implementation of the source

model into source code is then produced with a

separate code generator which has neither visibility

nor knowledge of Fiacre. Proof of semantic

consistency between the generated source code and

the formal model used for verification thus remains

an open point. With verifying model compilers the

verification and implementation-oriented views are

consistent by construction because they collapse to

the same representation. Such representation, for

example a SPARK program, is indeed analyzable,

executable and can be compiled to object code with

mature technologies.

Another interesting approach closer to the verifying

model compiler vision is the one proposed by ClawZ

[23]. It provides formal evidence of semantic

preservation of the refinement process from Simulink

models to SPARK source code. This evidence is

 Page 9/10

provided by translating both the Simulink model and

SPARK program into Z schemas and formally

proving their equivalence. To achieve this result, it

was necessary to define a formal Z representation

for a subset of Simulink; a Z representation for

SPARK is, on the other side, already available [24].

The main advantage of ClawZ is its verification tool

nature, meaning that its DO-178 qualification would

cost less than qualifying a code generator (which is a

development tool). In addition it does not need to

have any internal knowledge of the code generator,

as it just copes with the initial input (the model) and

the final output (the SPARK code). The approach

proposed by ClawZ is conceptually similar to the one

we propose, in the sense they both require formal

programming languages to be the target of code

generation: it is not a coincidence that SPARK is the

target language of ClawZ. At this stage, the main

advantage of the model compiler vision is the

avoidance of using additional explicit formal

representations (like Z) to prove property

preservation. Recent advancements [33] on this

technology suggest that the Z representations can

be hidden.

Formal evidence of property preservation can also

be obtained by construction if the model compiler

itself is formally developed/verified. This is the

approach applied for the CompCert [30] compiler

and for the block sequencer in Gene-Auto. Both

technologies were developed using Coq [31]. The

main limitation of this approach is that the complexity

and cost of the formal development may drastically

limit the scope of the technology. CompCert for

example has only PowerPC and ARM back-ends,

has limited optimization features and contains

several functionalities (for example I/O and parsing)

which are not formally specified/verified. The Gene-

Auto block sequencer is specified with 4500 SLOC

of Coq (including 130 theorems) [34] and represents

just a single step in the model compilation chain.

The last alternative solution is to consider just

verification of absence of run-time errors on the

generated code using tools like Polyspace or

CodePeer. This approach clearly does not provide

any evidence of property preservation. The same of

course applies when trying to infer the faithfulness of

the generated code to the model by simply

comparing test results obtained via model simulation

and execution of the generated code.

7. Conclusion

In this paper we have discussed the vision for

verifying model compilers. Verifying model compilers

promise improvements over the state-of-the-art in

code generation by targeting a formal programming

language which (i) can automatically provide

evidence that property proved at model level still

hold at source level and (ii) can complement model-

level verification activities with source-level formal

verification of platform-specific properties. We

supported our point-of-view with limited experiments

for Simulink and Stateflow models and with

industrial-scale applications for Executable UML

models. All experiments used SPARK as a target

language.

In this paper we also evaluated different

programming languages with respect to the

requirement of being used as targets of a verifying

model compiler. The SPARK and Frama-C

frameworks emerged as the most effective choices.

Finally, we discussed the impact of targeting formal

programming languages from several points of view,

in particular (i) development process of a model

compiler, (ii) DO-178 tool qualification and (iii) DO-

178 application certification. The deployment of

verifying model compilers brings benefit for all

aspects above.

From a conceptual standpoint, the most valuable

outcome of our discussion is the positioning of

traditional programming languages within a model-

centric development process. In contexts outside the

high-integrity domain, source code may well be

considered as a derived artifact with no interesting

properties. On the contrary, if property preservation

and platform-specific verification are significant

concerns, the formal programming language plays a

pivotal role within a model-based compilation chain,

even though such intermediate representation may

not be directly visible to the modeler. This requires

finding a semantic mapping for the modeling

language which lends itself to formal verification via

automated theorem proving. Considering this aspect,

it is important to note that the dominant needs when

developing a (verifying) model compiler shall be

those expressed by the developers of the model

compiler rather than those of the final users. Given

the cost of qualification/certification and that mature

technologies exist to easily integrate modules written

in different programming languages, there is no

 Page 10/10

reason to target a less-than-ideal formal

programming language.

Formal programming languages and proof

technologies may of course need to be enhanced to

extend the set of properties they can prove and to

ensure that properties can be preserved from model

to sources. If this technical development is

accomplished, verifying model compilers will ease

the adoption of the model-driven paradigm, increase

the confidence in modeled application, and improve

the overall development process.

8. Acknowledgements

This work was carried out within the context of the

LAMBDA project, part of the System@tic cluster.

The views presented in this paper are those of the

authors’ only and do not necessarily engage those of

the other members of the LAMBDA consortium. The

authors gratefully thank the Gene-Auto consortium.

9. References

[1] OMG: "UML2 Metamodel Superstructure"
http://www.omg.org/cgi-bin/doc?ptc/2004-10-05.

[2] Bordin M., Panunzio M., Vardanega T.: "Beyond
ASSERT: Increasing the Effectiveness of Model-
driven Engineering", DASIA 2009.

[3] OMG: "SysML specification"
http://www.omg.org/cgi-bin/doc?formal/2007-09-01.

[4] OMG: "UML profile for MARTE"
http://www.omg.org/cgi-bin/doc?ptc/2007-08-04.

[5] SAE: "AADL" –
http://la.sei.cmu.edu/aadl/currentsite/aadlstd.html.

[6] Simulink:
http://www.mathworks.com/products/simulink/

[7] Papyrus: http://wiki.eclipse.org/MDT/Papyrus

[8] SPARK:
http://www.adacore.com/home/products/sparkpro/

[9] Frama-C: http://frama-c.com/

[10] JML: http://www.eecs.ucf.edu/~leavens/JML/

[11] Spec#: http://research.microsoft.com/en-
us/projects/specsharp/

[12] Miller S., WhalenM., Cofer D.: "Software Model
Checking Takes Off", Communications of the ACM
VOL.53 NO.02 02/2010

[13] NuSMV: http://nusmv.irst.itc.it/

[14] Toom A., Naks T., Pantel M., Gandriau M., Wati I.:
"Gene-Auto: an Automatic Code Generator for a
safe subset of Simulink/Stateflow and Scicos"
ERTS 2010.

[15] Gene-Auto/Ada: http://www.open-
do.org/projects/geneautoada/

[16] Wedin E.: "Applying Model-driven Architecture and
SPARK Ada – A SPARK Ada Model Compiler for
xtUML" Reliable Software Technologies – Ada
Europe 2010 Industrial Presentation (to appear).

[17] Curtis D.: "SPARK annotations Within Executable
UML" Reliable Software Technologies – Ada
Europe 2006, LNCS

[18] EUROCAE: "Software Considerations in Airborne
Systems and Equipment Certification" - DO-178B,
1992, 1999.

[19] Whalen M., Innis J., Miller S., Wagner L.: "ADGS-
2100 Adaptive Display & Guidance System Window
Manager Analysis" NASA Contract Report available
at http://shemesh.larc.nasa.gov/fm/papers/ADGS-
2100WindowManagerAnalysis.pdf

[20] Caveat: http://www-
list.cea.fr/labos/fr/LSL/caveat/index.html

[21] Astrée: http://www.astree.ens.fr/

[22] Berthomieu B., Bodeveix J., Farail P., Filali M.,
Garavel H., Gaufillet P., Lang F., Vernadat F.:
"Fiacre: an Intermediate Language for Model
Verification In the TOPCASED Environment" ERTS
2008

[23] Arthan R., Caseley P., O'Halloran C., Smith A.:
"ClawZ: Control Laws in Z " ICFEM'00

[24] O'Neill: "The Formal Semantics of SPARK83"
available on request on
http://www.sparkada.com/sparkTechnicalReference
s.aspx

[25] Souyris J., Wiels V., Delmas D., Delseny H.:
"Formal Verification of Avionics Software Products"
FM2009, LNCS

[26] Bordin M., Gasperoni F.: "Verifying Model
Compilers" ERTS 2010. Full paper available at
http://www.adacore.com/category/developers-
center/reference-library/technical-papers/

[27] CodePeer:
http://www.adacore.com/home/products/codepeer/

[28] Coverity Static Analysis:
http://www.coverity.com/products/static-
analysis.html

[29] Jackson P., Ellis B., Sharp K.: "Using SMT Solvers
to Verify High-Integrity Programs" 2

nd
 international

Workshop on Automated Formal Methods, AFM07,
2007.

[30] Leroy X.: "Formal Verification of a realistic
compiler" Communications of the ACM 52(7), July
2009

[31] Coq: http://coq.inria.fr/

[32] SCADE KCG: http://www.esterel-
technologies.com/products/scade-suite/do-178b-
code-generation

[33] O'Halloran C.: "Guess and Verify – Back to the
Future", FM2009

[34] Izerrouken N., Pantel M., Thirioux X.: "Machine-
Checked Sequencer for Crititcal Embedded Code
Generator" ICFEM09

